We represent **B&B** search trees to learn branching policies that generalize across heterogeneous MILPs

35th AAAI Conference on Artificial Intelligence · February 2-9, 2021

Parameterizing B&B search trees to learn branching policies

Giulia Zarpellon, Jason Jo, Andrea Lodi, Yoshua Bengio

MILPs and B&B: a primer

- Mixed-Integer Linear Problems encode discrete decisions in a variety of real-world settings
- Branch and bound (B&B) is an exact tree search method that sequentially solves relaxations

MILP
$$z^* = min_x \{c^T x : x \in X_{MIP}\}$$

Tree_t

► If $x^P \notin X_{MIP}$, candidates for branching $\mathcal{C} := \{ i \in \mathcal{J} : x_i^P \notin \mathbb{Z} \}$

 $X_{MIP} = \{ x \in \mathbb{R}^n : Ax \le b, \, x_i \in \mathbb{Z} \, \forall \, i \in \mathcal{J} \}$

BRANCHING aka VARIABLE SELECTION:

Select $j \in C$ to split the node

 $x_j \le \left\lfloor x_j^P \right\rfloor \ \lor \ x_j \ge \left\lceil x_j^P \right\rceil$

Rethink *learning to branch*

Currently in the literature

- > (c, A, b)-dependent models and features (e.g., GCNN), with focus on special combinatorial classes
- > generalization measured on synthetic, bigger-size problems

→ We seek broader generalization scope, across generic MILPs no restrictions on structure/size

How?

New **representation paradigm**: combine input about variables' roles in the B&B search (C_t) and the tree exploration itself $(Tree_t)$ to enable generalization across heterogeneous instances

TreeGate model

- Modulation (gating) of variables' representations provides context over branching via learned tree-based signal
- **Systematic generalization** by better inference + composition of high-level **branching factors** (less prone to overfitting to superficial regularities)

Experiments

- 27 instances from MILP benchmarks: highly diverse, manageable trees ~ 85K / 14K / 28K samples
- Imitation learning expert is relpscost (SCIP default)
- Proper solver setting to fairly compare branching rules
- Test on samples from never seen instances and larger branching sets

Take-home

- TreeGate better than NoTree in all aggregated metrics: contextual signal allows broader generalization scope, w/o need of analogs (vs. GCNN)
- Scale up to highly **non-uniform data and action spaces:** tree-related parameterization useful for future (reinforcement) learning approaches

*Is Tree*_t *static or capturing* **B&B search dynamics***?*

t-SNE plots to summarize the evolution of $Tree_t$ throughout different B&B searches can look very diverse

How do branching sets C_t *look like?*

Longer ta distribution of $|\mathcal{C}_t|$ for test set

Learned policies **comparison***: accuracy and B&B nodes*

- **TreeGate** improves on **NoTree** +19% test accuracy, -27% B&B nodes (test)
- Both policies compare well with SCIP rules

Policy	Test a	Test acc@1 (@5)		Val acc@1 (@5)		GCNN struggles to		
NoTree TreeGat	te $64.02 (88.51)$ 83.70 (95.83)		77.69 (95.88) 84.33 (96.60)		generalize and often hits time-limit			
GCNN	15.28 (44.16) 19.28 (38.44)				С	Compare to SCIP		
Imitation learning accuracy default in terms of fair number of nodes								
Set	NoTree	TreeGate	% diff	GCNN	random	pscost	relpscost (fair)	
All	1241.79	1056.79	-14.90	*3660.32	*6580.79	*1471.61	286.15(719.20)	
TRAIN	834.40	759.94	-8.92	*1391.41	*2516.04	884.37	$182.27\ (558.34)$	
Test	3068.96	2239.47	-27.03	*33713.63	*61828.29	*4674.34	712.77 (1276.76)	

B&B nodes across multiple SCIP rollouts (shifted geometric means)

Check out our paper and code!

